skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Yaxiong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the design and implementation of WaveFlex, the first smart surface that enhances Private 5G networks operating under the shared-license framework in the Citizens Broadband Radio Service frequency band. WaveFlex works in the presence of frequency diversity: multiple nearby base stations operating on different frequencies, as dictated by a Spectrum Access System coordinator. It also handles time dynamism: due to the dynamic sharing rules of the CBRS band, base stations occasionally switch channels, especially when priority users enter the network. Finally, WaveFlex operates independently of the network itself, not requiring access to nor modification of the gNB or UEs, yet it remains compliant with and effective on prevailing cellular protocols. We have designed and fabricated WaveFlex on a custom multi-layer PCB, software defined radio based network monitor, and supporting control software and hardware. Our experimental evaluation benchmarks operational Private 5G and LTE networks running at full line rate. In a realistic indoor office scenario, 5G experimental results demonstrate an 8.58~dB average SNR gain, and an average throughput gain of 10.77 Mbps under a single gNB, and 12.84 Mbps under three gNBs, corresponding to throughput improvements of 18.4% and 19.5%, respectively. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Rapid delay variations in today’s access networks impair the QoE of low-latency, interactive applications, such as video conferencing. To tackle this problem, we propose Athena, a framework that correlates high-resolution measurements from Layer 1 to Layer 7 to remove the fog from the window through which today’s video-conferencing congestion-control algorithms see the network. This cross-layer view of the network empowers the networking community to revisit and re-evaluate their network designs and application scheduling and rate-adaptation algorithms in light of the complex, heterogeneous networks that are in use today, paving the way for network-aware applications and application-aware networks. 
    more » « less
    Free, publicly-accessible full text available November 18, 2025
  3. The Coronavirus disease (COVID-19) pandemic has caused social and economic crisis to the globe. Contact tracing is a proven effective way of containing the spread of COVID-19. In this paper, we propose CAPER, a Cellular-Assisted deeP lEaRning based COVID-19 contact tracing system based on cellular network channel state information (CSI) measurements. CAPER leverages a deep neural network based feature extractor to map cellular CSI to a neural network feature space, within which the Euclidean distance between points strongly correlates with the proximity of devices. By doing so, we maintain user privacy by ensuring that CAPER never propagates one client's CSI data to its server or to other clients. We implement a CAPER prototype using a software defined radio platform, and evaluate its performance in a variety of real-world situations including indoor and outdoor scenarios, crowded and sparse environments, and with differing data traffic patterns and cellular configurations in common use. Microbenchmarks show that our neural network model runs in 12.1 microseconds on the OnePlus 8 smartphone. End-to-end results demonstrate that CAPER achieves an overall accuracy of 93.39%, outperforming the accuracy of BLE based approach by 14.96%, in determining whether two devices are within six feet or not, and only misses 1.21% of close contacts. CAPER is also robust to environment dynamics, maintaining an accuracy of 92.35% after running for ten days. 
    more » « less
  4. null (Ed.)
    The coronavirus disease (COVID-19) pandemic has caused social and economic upheaval around the world. Contact tracing is a proven effective way that health authorities may contain the spread of COVID-19, but is challenging for airborne disease. In this paper, we propose LTESafe, a cellular-assisted privacy-preserving COVID-19 contact tracing system. LTESafe leverages a deep neural network based feature extractor to map the cellular CSI to a high-dimensional feature space, within which the Euclidean distance between points indicates the proximity of devices. By doing so, we preserve user privacy by hiding the physical locations of smartphones and at the same time achieve high accuracy. Our preliminary experimental results demonstrate that LTESafe achieves an overall accuracy of 92.79% in determining whether two devices are within six feet proximity or not, and only misses 1.35% of close contacts. 
    more » « less
  5. null (Ed.)
    Cellular networks are becoming ever more sophisticated and over-crowded, imposing the most delay, jitter, and throughput damage to end-to-end network flows in today’s internet. We therefore ar- gue for fine-grained mobile endpoint-based wireless measurements to inform a precise congestion control algorithm through a well- defined API to the mobile’s cellular physical layer. Our proposed congestion control algorithm is based on Physical-Layer Bandwidth measurements taken at the Endpoint (PBE-CC), and captures the latest 5G New Radio innovations that increase wireless capacity, yet create abrupt rises and falls in available wireless capacity that the PBE-CC sender can react to precisely and rapidly. We imple- ment a proof-of-concept prototype of the PBE measurement module on software-defined radios and the PBE sender and receiver in C. An extensive performance evaluation compares PBE-CC head to head against the cellular-aware and wireless-oblivious congestion control protocols proposed in the research community and in deployment, in mobile and static mobile scenarios, and over busy and idle networks. Results show 6.3% higher average throughput than BBR, while simultaneously reducing 95th percentile delay by 1.8×. 
    more » « less
  6. Conventional thinking treats the wireless channel as a given constraint. Therefore, wireless network designs to date center on the problem of the endpoint optimization that best utilizes the channel, for example, via rate and power control at the transmitter or sophisticated decoding mechanisms at the receiver. We instead explore whether it is possible to reconfigure the environment itself to facilitate wireless communication. In this work, we instrument the environment with a large array of inexpensive antennas (LAIA) and design algorithms to configure them in real time. Our system achieves this level of programmability through rapid adjustments of an on-board phase shifter in each LAIA device. We design a channel decomposition algorithm to quickly estimate the wireless channel due to the environment alone, which leads us to a process to align the phases of the array elements. Variations of our core algorithm can then optimize wireless channels on the fly for single- and multi-antenna links, as well as nearby networks operating on adjacent frequency bands. We design and deploy a 36-element passive array in a real indoor home environment. Experiments with this prototype show that, by reconfiguring the wireless environment, we can achieve a 24% TCP throughput improvement on average and a median improvement of 51.4% in Shannon capacity over the baseline single-antenna links. Over the baseline multi-antenna links, LAIA achieves an improvement of 12.23% to 18.95% in Shannon capacity. 
    more » « less
  7. Conventional thinking treats the wireless channel as a constraint, so wireless network designs to date target endpoint designs that best utilize the channel. Examples include rate and power control at the transmitter, sophisticated receiver decoder designs, and high-performance forward error correction for the data itself. We instead explore whether it is possible to reconfigure the environment itself to facilitate wireless communication. In this work, we instrument the environment with a large array of inexpensive antenna (LAIA) elements, and design algorithms to configure LAIA elements in real time. Our system achieves a high level of programmability through rapid adjustments of an on-board phase shifter in each LAIA element. We design a channel decomposition algorithm to quickly estimate the wireless channel due to the environment alone, which leads us to a process to align the phases of the LAIA elements. Variations of our core algorithm then improve wireless channels on the fly for singleand multi-antenna links, as well as nearby networks operating on adjacent frequency bands. We implement and deploy a 36-element LAIA array in a real indoor home environment. Experiments in this setting show that, by reconfiguring the wireless environment, we can achieve a 24% TCP throughput improvement on average and a median improvement of 51.4% in Shannon capacity over baseline single-antenna links. Over baseline multi-antenna links, LAIA achieves an improvement of 12.23% to 18.95% in Shannon capacity. 
    more » « less